Rule-based fuzzy classifier based on quantum ant optimization algorithm
نویسندگان
چکیده
Fuzzy rule-based classification systems have been used extensively in data mining. This paper proposes a fuzzy rulebased classification algorithm based on a quantum ant optimization algorithm. A method of generating the hierarchical rules with different granularity hybridization is used to generate the initial rule set. This method can obtain an original rule set with a smaller number of rules. The modified quantum ant optimization algorithm is used to generate the optimal individual. Compared to other similar algorithms, the algorithm proposed in this paper demonstrates higher classification accuracy and a higher convergence rate. The algorithm is proved to be convergent on theory. Some experiments have been conducted on the algorithm, and the results proved that the algorithm is feasible.
منابع مشابه
FUZZY GRAVITATIONAL SEARCH ALGORITHM AN APPROACH FOR DATA MINING
The concept of intelligently controlling the search process of gravitational search algorithm (GSA) is introduced to develop a novel data mining technique. The proposed method is called fuzzy GSA miner (FGSA-miner). At first a fuzzy controller is designed for adaptively controlling the gravitational coefficient and the number of effective objects, as two important parameters which play major ro...
متن کاملVoltage Sag Compensation with DVR in Power Distribution System Based on Improved Cuckoo Search Tree-Fuzzy Rule Based Classifier Algorithm
A new technique presents to improve the performance of dynamic voltage restorer (DVR) for voltage sag mitigation. This control scheme is based on cuckoo search algorithm with tree fuzzy rule based classifier (CSA-TFRC). CSA is used for optimizing the output of TFRC so the classification output of the network is enhanced. While, the combination of cuckoo search algorithm, fuzzy and decision tree...
متن کاملRobust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملMOHAMMAD SANIEE ABADEH et. al: INDUCTION OF FUZZY CLASSIFICATION SYSTEMS
In this paper we have proposed an evolutionary algorithm to induct fuzzy classification rules. The algorithm uses an ant colony optimization based local searcher to improve the quality of final fuzzy classification system. The proposed algorithm is performed on Intrusion Detection as a high-dimensional classification problem. Results show that the implemented evolutionary ACO-Based algorithm is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Intelligent and Fuzzy Systems
دوره 29 شماره
صفحات -
تاریخ انتشار 2015